Всё, что вы должны знать о каротиноидах. Пигменты растений: каротиноиды


Каротиноиды - жирорастворимые пигменты желтого, оранжевого, красного цвета - присутствуют в хлоропластах всех растений. Они входят также в состав хромопластов в незеленых частях растений, например в корнеплодах моркови, от латинского наименования которой (Daucus carota L.) они и получили свое название. В зеленых листьях каротиноиды обычно незаметны из-за присутствия хлорофилла, но осенью, когда хлорофилл разрушается, именно каротиноиды придают листьям характерную желтую и оранжевую окраску. Каротиноиды синтезируются также бактериями и грибами, но не животными организмами. В настоящее время известно около 400 пигментов, относящихся к этой группе.

Структура и свойства. Элементарный состав каротиноидов установил Вильштеттер. С 1920 по 1930 г. была определена структура основных пигментов этой группы. Искусственный синтез ряда каротиноидов впервые осуществлен в 1950 г. в лаборатории П. Каррера. К каротиноидам относятся три группы соединений: 1) оранжевые или красные пигменты каротины (С 40 Н 56); 2) желтые ксантофиллы (С 4 оН 56 О 2 и С 40 H 51 O 4); 3) каротиноидные кислоты - продукты окисления каротиноидов с укороченной цепочкой и карбоксильными группами (например, C 20 H 24 O 2 - кроцетин, имеющий две карбоксильные группы).

Каротины и ксантофиллы хорошо растворимы в хлороформе, бензоле, сероуглероде, ацетоне. Каротины легко растворимы в петролейном и диэтиловом эфирах, но почти нерастворимы в метаноле и этаноле. Ксантофиллы хорошо растворимы в спиртах и значительно хуже в петролейном эфире.

Все каротиноиды - полиеновые соединения. Каротиноиды первых двух групп состоят из восьми остатков изопрена, которые образуют цепь конъюгированных двойных связей. Каротиноиды могут быть ациклическими (алифатическими), моно- и бициклическими. Циклы на концах молекул каротиноидов являются производными ионона (рис. 1).

Рис.1. Структурные формулы каротиноидов и последовательность их превращений

Примером ациклического каротиноида может служить ликопин (С 40 Н 56) - основной каротин некоторых плодов (в частности, томатов) и пурпурных бактерий.

Каротин (рис. 1) имеет два β-иононовых кольца (двойная связь между С 5 и С 6). При гидролизе β-каротина по центральной двойной связи образуются две молекулы витамина А (ретинола). α-Каротин отличается от β-каротина тем, что у него одно кольцо β-иононовое, а второе - Ј-иононовое (двойная связь между С 4 и С 5).

Ксантофилл лютеин - производное a-каротина, а зеаксантин - β-каротина. Эти ксантофиллы имеют по одной гидроксильной группе в каждом иононовом кольце. Дополнительное включение в молекулу зеаксантина двух атомов кислорода по двойным связям С 5 -С 6 (эпоксидные группы) приводит к образованию виолаксантина. Название

«виолаксантин» связано с выделением этого соединения из лепестков желтых анютиных глазок (Viola tricolor). Зеаксантин впервые получен из зерновок кукурузы (Zea mays). Лютеин (от лат. luteus - желтый) содержится, в частности, в желтке куриных яиц. К наиболее окисленным изомерам лютеина относится фукоксантин (С 40 Н 60 О 6) - главный ксантофилл бурых водорослей.

Основные каротиноиды пластид высших растений и водорослей - Β-каротин, лютеин, виолаксантин и неоксантин. Синтез каротиноидов начинается с ацетил-СоА через мевалоновую кислоту, геранилгеранилпирофосфат до ликопина, который является предшественником всех других каротиноидов. Синтез каротиноидов происходит в темноте, но резко ускоряется при действии света. Спектры поглощения каротиноидов характеризуются двумя полосами в фиолетово-синей и синей области от 400 до 500 нм (см. рис. 4.3). Количество и положение максимумов поглощения зависят от растворителя. Этот спектр поглощения определяется системой конъюгированных двойных связей. При увеличении числа таких связей максимумы поглощения смещаются в длинноволновую область спектра. Каротиноиды, как и хлорофиллы, нековалентно связаны с белками и липидами фотосинтетических мембран.

Роль каротиноидов в процессах фотосинтеза

Каротиноиды - обязательные компоненты пигментных систем всех фотосинтезирующих организмов. Они выполняют ряд функций, главные из которых: 1) участие в поглощении света в качестве дополнительных пигментов, 2) защита молекул хлорофиллов от необратимого фотоокисления. Возможно, каротиноиды принимают участие в кислородном обмене при фотосинтезе.

Важное значение каротиноидов как дополнительных пигментов, поглощающих свет в синефиолетовой и синей частях спектра, становится очевидным при рассмотрении распределения энергии в спектре суммарной солнечной радиации на поверхности Земли. Как следует из рисунка 2, максимум этой радиации приходится на сине-голубую и зеленую части спектра (480 - 530 нм). В естественных условиях доходящая до поверхности Земли суммарная радиация слагается из потока прямой солнечной радиации на горизонтальную поверхность и рассеянной радиации неба.


Рис.2.Распределение энергии в спектре суммарной и рассеянной радиации при безоблачном небе

Рассеивание света в атмосфере происходит благодаря аэрозольным частицам (капли воды, пылинки и т. д.) и флуктуациям плотности воздуха (молекулярное рассеяние). Спектральный состав суммарной радиации в области 350 - 800 нм при безоблачном небе в течение дня почти не меняется. Объясняется это тем, что увеличение доли красных лучей в прямой солнечной радиации при низком стоянии Солнца сопровождается увеличением доли рассеянного света, в котором много сине-фиолетовых лучей. Атмосфера Земли в значительно большей степени рассеивает лучи коротковолновой части спектра (интенсивность рассеяния обратно пропорциональна длине волны в четвертой степени), поэтому небо выглядит голубым. При отсутствии прямого солнечного света (пасмурная погода) увеличивается доля сине-фиолетовых лучей. Эти данные указывают на важность коротковолновой части спектра при использовании наземными растениями рассеянного света и возможность участия каротиноидов в фотосинтезе в качестве дополнительных пигментов. В модельных опытах показана высокая эффективность переноса энергии света от каротиноидов к хлорофиллу а, причем этой способностью обладают молекулы каротинов, но не ксантофиллов.

Вторая функция каротиноидов - защитная. Впервые данные о том, что каротиноиды могут защищать молекулы хлорофилла от разрушения, были получены Д. И. Ивановским. В его опытах пробирки, содержащие одинаковый объем раствора хлорофилла и разные концентрации каротиноидов, выставлялись на 3 ч на прямой солнечный свет. Оказалось, что чем больше каротиноидов было в пробирке, тем в меньшей степени разрушался хлорофилл. В дальнейшем эти данные получили многочисленные подтверждения. Так, бескаротиноидные мутанты хламидомонады на свету в атмосфере кислорода погибают, а в темноте при гетеротрофном способе питания нормально развиваются и размножаются. У мутанта кукурузы, у которого отсутствовал синтез каротиноидов, образующийся хлорофилл в аэробных условиях при сильном освещении быстро разрушался. В отсутствие кислорода хлорофилл не разрушался.

Каким же образом каротиноиды препятствуют разрушению хлорофилла? В настоящее время показано, что каротиноиды способны реагировать с хлорофиллом, находящимся в триплетном состоянии, предотвращая его необратимое окисление. При этом энергия триплетного возбужденного состояния хлорофилла превращается в теплоту.

Рис.3. Реакция каротиноидов с хлорофиллом

Кроме этого каротиноиды, взаимодействуя с возбужденным (синглетным) кислородом, который неспецифически окисляет многие органические вещества, могут переводить его в основное состояние.

Рис.4. Реакция каротиноидов с возбужденным кислородом

Менее ясна роль каротиноидов в кислородном обмене при фотосинтезе. У высших растений, мхов, зеленых и бурых водорослей осуществляется светозависимое обратимое дезэпоксидирование ксантофиллов. Примером такого превращения может служить виолаксантиновый цикл.


Рис.5. Виолаксантиновый цикл

Значение виолаксантинового цикла остается невыясненным. Возможно, он служит для устранения излишков кислорода. Каротиноиды у растений выполняют и другие функции, не связанные с фотосинтезом. В светочувствительных «глазках» одноклеточных жгутиковых и в верхушках побегов высших растений каротиноиды, контрастируя свет, способствуют определению его направления. Это необходимо для фототаксисов у жгутиковых и фототропизмов у высших растений.

Каротиноиды обусловливают цвет лепестков и плодов у некоторых растений Производные каротиноидов - витамин А, ксантоксин, действующий подобно АБК, и другие биологически активные соединения. Хромопротеин родопсин, обнаруженный у некоторых галофильных бактерий, поглощая свет, функционирует в качестве Н + -помпы. Хромофорной группой бактериородопсина является ретиналь - альдегидная форма витамина А. Бактериородопсин аналогичен родопсину зрительных анализаторов животных.



Просмотры: 143

25.11.2018

Природные красители, придающие листьям, цветам, плодам, корням и другим частям растений цветную окраску (желтую, оранжевую, красную, коричневую) образуют группу каротиноидов , нерастворимых в воде биологически активных веществ, которые синтезируются всеми видами растений, а также некоторыми микроорганизмами.

Каротиноиды вместе с хлорофиллом , обеспечивающим растениям зелёный цвет, составляют две группы фотосинтетических пигментов и выполняют функции поглощения света с последующим преобразованием солнечной энергии в химическую. Кроме того, каротиноиды играют защитную роль, предохраняя хлорофилл от избыточного действия солнечной энергии и от окисления выделяемым при фотосинтезе кислородом. Также они обеспечивают структуру фотосистемы, занимая в фотосинтетических мембранах строго определённое положение.

Несмотря на сходство их роли в жизнедеятельности растений, хлорофиллы и каротиноиды имеют ряд различий. Так, хлорофиллы поглощают, главным образом, световые волны красной, инфракрасной (длина волн 650 – 710 нм), синей и ультрафиолетовой (длина волн 400 – 500 нм) частей спектра, а каротиноиды – преимущественно зелёной, синей, фиолетовой, ультрафиолетовой области (длина волн 280 – 550 нм). К тому же они имеют различную молекулярную структуру; каротиноиды, в отличие от хлорофилла, не содержат металлов.

Каротиноиды, в свою очередь, представлены двумя видами жирорастворимых полиненасыщенных углеводородных соединений терпенового ряда: каротинами и ксантофиллами . Ксантофиллы отличаются от каротинов тем, что, кроме углерода и водорода, содержат также атомы кислорода.



Находясь в тканях и клетках растений, ксантофиллы обеспечивают им желтую окраску. Впервые были выделены из осенних листьев в 1837 году шведским химиком и минералогом Йёнсом Якобом Берцелиусом, который и дал им это название.



На сегодняшний день исследованы около 650 различных представителей каротиноидов. В их числе находятся самый распространенный и наиболее известный оранжевый пигмент каротин , придающий желто-оранжевый цвет плодам фруктов и овощей, а также другим частям растений (листьям, корням и пр.), и красный пигмент ликопин (плоды томата, мякоть арбуза, фрукты, ягоды), являющийся в сущности его изомером. Можно также рассматривать каротины в качестве производных ликопина.



Первый каротиноидный пигмент, известный нам сегодня как каротин (лат. carota ), был получен из корнеплодов моркови и желтой репы в 1831 году немецким ученым Фердинандом Вакенродером. Гораздо позже немецкий химик Рихард Вильштеттер предложил эмпирическую формулу каротина С 40 Н 56 . И лишь в 1930 году, спустя почти столетие после официального открытия каротина, швейцарским химиком Полом Каррером была окончательно подтверждена его структурная формула, за что учёный удостоился Нобелевской премии (1937 г.).



Исследования показали, что каротин может существовать в четырёх формах: α -каротин, β -каротин, γ -каротин и δ -каротин, из которых первые три формы представляют собой провитамин А . Попадая в организм человека (животного), они преобразуются в жизненно необходимые вещества ретиноиды (А 1 , А 2 , ретиноевая кислота и др.), обладающие антиоксидантными свойствами (защита клеток от разрушительного действия световой энергии). Наибольшей эффективностью по своему действию отличается β-каротин, так как он преобразуется в две молекулы ретинола, тогда как остальные (α- и γ-каротин) могут образовывать только одну.



Открытие витамина А произошло в 1913 году. Его значение для жизнедеятельности биоорганизмов трудно переоценить. В качестве структурного компонента клеточных мембран он оказывает благотворное влияние на рост и развитие, входит в состав основного зрительного пигмента родопсина , обеспечивает антиоксидантную защиту. Недостаток этого витамина в питании существенно снижает иммунитет, замедляет ростовые процессы, негативно отражается на зрительных функциях.



В недавних исследованиях нашли подтверждение противоопухолевые и радиопротекторные свойства β-каротина. Он способствует восстановлению защитных сил организма, положительно влияет на работу сердечно-сосудистой системы, показан при некоторых гинекологических заболеваниях и внутриклеточной гипоксии. Благодаря регенерирующим свойствам, масляные препараты с каротином применяются для лечения ожогов, при обморожении, различных кожных заболеваниях. Кроме того, β-каротин является канцеро- и гепатопротектором.



Поскольку организм человека не способен синтезировать витамин А самостоятельно, то его запасы пополняются за счет правильно подобранного питания. К растительной пище, богатой содержанием провитаминов А, относятся морковь, томаты, красный перец, листья шпината, тыква, зелёный лук, брокколи, многие ягоды и фрукты. Употребляя продукты, богатые β-каротином, следует помнить, что он плохо растворяется в воде, поэтому хорошая усваиваемость провитамина обеспечивается в случае сочетания его с небольшим количеством жира. Очень полезны продукты животного происхождения, содержащие ретиноиды (витамин А в наиболее доступной форме): молоко, сливочное масло, сметана, творог, яичный желток, рыбий жир, печень, икра.



Каротин как красящее вещество (краситель Е160 и Е160а) используется в пищевой и кондитерской промышленности. Основными источниками его получения промышленным способом являются плоды таких растений как облепиха, шиповник, некоторые виды грибов и микроорганизмов.

Каротиноиды - липофильные пигменты, которые у растений локализованы в хлоропластах и хромопластах. Их синтезируют все организмы, осуществляющие оксигенный фотосинтез: цианобактерии, водоросли, высшие растения. Кроме того, каротиноиды синтезируют и накапливают многие грибы, например лисички содержат значительное количество (3-каротина и кантаксантина. Животные в большинстве своем не способны синтезировать каротиноиды. Поэтому необходимые им для нормального метаболизма каротиноиды они получают из растений.

Строение и биосинтез каротиноидов

Большинство каротиноидов - тетратерпеноидов, построенных из восьми изопреновых единиц, - имеет углеродную цепь, состоящую из 40 атомов углерода. У многих каротиноидов углеродная полиизопреновая цепь циклизуется на концах, образуя несколько типов иононовых колец. Известно более 600 каротиноидов. Они отличаются расположением пиков поглощения света, которые, тем не менее, всегда находятся в пределах диапазона 400-550 нм (фиолетовый-зеленый). Каротиноиды подразделяются на каротины, состоящие только из атомов углерода и водорода, и ксантофиллы, имеющие в своем составе еще и атомы кислорода в виде гидрокси-, метокси-, эпокси- или кетогрупп.

Каротины обычно оранжевого цвета. Наиболее распространены а- и (3-каротины (рис. 57). У а-каротина есть (3- и?-иононовые кольца, а у (3-каротина - два (3-иононовых кольца. Многие растения содержат ликопин - каротин ярко-красного цвета, не имеющий иононовых колец. Ликопин является интермедиатом в синтезе каротиноидов, включая а- и (3-каротины.

Ксантофиллы разнообразны по цвету: от бледно-желтого до темно-красного, хотя и получили свое название от греческого слова «ксантос», что значит желтый. Например, астаксантин (рис. 57) придает яркий алый цвет лепесткам адониса, а кап- сантин и капсорбин окрашивают плоды перца Capsicum в темно-красный цвет. Наиболее распространены среди ксантофиллов желтые пигменты лютеин, зеаксантин и виолаксантин. Кантаксантин и астаксантин (рис. 57) широко известны благодаря своим антиоксидантным свойствам.

Большое функциональное значение имеют апокаротиноиды - продукты окислительного разрыва углеродной цепи каротиноидов. У растений изученными апокаротиноидами являются 8"-апокаротиналь, а также фитогормоны: аб- сцизовая кислота и стриголактон. Животным и человеку необходимы ретиналь, ретинол и ретиноевая кислота - ретиноиды, собирательно называемые витамином А (рис. 57).

Рис. 57.

У растений синтез каротиноидов происходит в пластидах, где эти пигменты обычно и остаются: в зеленых листьях это хлоропласты, а в плодах, лепестках цветков, корнеплодах - хромопласты. Вначале из пренильных С 5 -блоков при участии изопентенилтрансферазы - геранилгеранилдифосфатсинтазы - синтезируется ге- ранилгеранилдифосфат (рис. 58). Затем две молекулы геранилгеранилдифосфата соединяются «хвостом к хвосту» при участии синтазы фитоина. Далее бесцветный фи- тоин десатурируется и превращается в красный пигмент ликопин с системой конъюгированных двойных связей. Ликопин под действием специфических циклаз может превращаться в а- или (3-каротин. Каротины, в свою очередь, служат предшественниками ксантофиллов, в которые они превращаются при помощи различных оксигеназ: гидроксилаз, эпоксидаз и других. Кроме того, углеродная цепь каротиноидов может

Привет, друзья!

Я заметила такую интересную вещь.

Иногда пишешь пост и понимаешь, что обычный человек, не вникающий глубоко в различные медицинские или биохимические термины, не совсем порой понимает, что это может обозначать☺

Поэтому я решила написать небольшую серию постов и объяснить более простым языком, некоторые понятия, которые я очень часто употребляю в своих статья.

Все они являются мощнейшими антиоксидантами, защищающими наш организм от свободных радикалов. Красный цвет масла обусловлен присутствием в его составе большого количества каротиноидов, причём их содержание в масле в 15 раз больше, чем в моркови!!!

И да, помните, речь идет не о том, суррогатном пальмовом масле, которого всего боятся ☺ А о настоящем масле из красных пальм!!!

Я покупаю вот такое , добавляю его в пищу и просто наношу на кожу, как маску!!!

  • Морковь
  • Рябина
  • Оранжевый перец
  • Кукуруза
  • Цитрусовые
  • Тыква
  • Шиповник
  • Облепиха

Также каротиноиды присутствуют в лепестках цветов(особенно ноготки), водорослях, пыльце. Их много в яичном желтке и некоторых видах рыбы, а также еловой хвое.

Как усваиваются каротиноиды в теле?

Усвоение каротиноидов и их превращение в витамин А происходит в нашем теле в тонком кишечнике под воздействием определенных ферментов.

Но, иследованиями было установлено, что каротиноиды далеко не полностью усваиваются организмом.

Этот процесс идет лучше из мелко измельченных и предварительно обработанных продуктов, в которых клеточные мембраны разрушены.

Кроме того, важным фактором для усвоения каротиноидов организмом является наличие жировой среды. Еще в 1941 году было установлено, что количество каротина, усвояемого организмом из сырой моркови при диете, лишенной жиров, не превышает 1%. При тех же условиях из вареной моркови усваивается 19% каротина. После добавления масла усвоение каротина увеличивается до 25%.

Поэтому салат с измельченной морковью и маслом, будет полезнее, чем просто салат из сырой моркови.

Суточная норма

Рекомендуемая суточная норма потребления бета-каротина для взрослых составляет от 2 до 6 мг. Для примера в 100,0 моркови содержится около 8 мг. (я думаю, вы не забыли, что далеко не все 8 мг усвоит наш организм)

ВАЖНО!!!

Большие дозировки картиноидов и витамина А опасны для курильщиков со стажем, так как могут вызывать рак легкого. Также избыток витамина А опасен при беременности.

Также стоит учитывать тот фактор, что, к сожалению, количество каротиноидов постепенно уменьшается в продуктах при хранении.Они быстро разрушаются на свету и при свободном доступе кислорода воздуха.

Поэтому морковь, которую продают в супермаркет, чистую и промытую в пакетах, практически лишена этих важных компонентов.

Чтобы морковь сохранилапо максимуму все свои полезны свойства, ее нужно хранить в темном прохладном месте и не очищенную от земли.

Возможен ли дефицит каротиноидов у современного человека?

К сожалению, да.

По данным НИИ питания РАМН, в России хронический дефицит каротиноидов в питании отмечается у 40-60 % населения. Поэтому обязательно включайте продукты, богатые каротиноидами в свой рацион питания.

Если, чувствуете, что ваше питание неполноценное, покупайте витамины или качественные биологически активные добавки, выделенные из натуральных органических овощей или фруктов.

Я не стала описывать в этом посте подробно все научные детали, химический состав, биодоступность каротиноидов.

Все таки у меня блог, а не Википедия ☺. Думаю,что общее понятие о каротиноидах и о том, зачем они нам нужны, я смогла передать. Надеюсь на это ☺

Буду очень рада, если эта информация вам пригодится и вы поделитесь ей со своими друзьями в социальных сетях. Жду ваших отзывов и комментариев.

Буду очень благодарна за полезные советы ☺

С вами была Алена Яснева, всем пока!


От желтого до красно-оранжевого цвета, синтезируемые бактериями, водорослями, грибами, высшими растениями, нек-рыми губками, кораллами и др. организмами; обусловливают окраску цветов и плодов. Представляют собой полиненасыщ. соед. терпенового ряда, построенные преим. по единому структурному принципу: по концам полиеновой цепи, состоящей из 4 изопреноидных остатков, расположены циклогексеновые кольца, или алифатич. изопреноидные остатки. В большинстве случаев содержат в молекуле 40 атомов углерода. Подразделяются на каротиноидные , С 40 -ксантофиллы, гомо-, апо- и нор-К. Св-ва нек-рых К. приведены в таблице. Из растит. материалов К. могут быть выделены экстракцией орг. р-рителями, не содержащими пероксидов, на рассеянном свету в инертной атмосфере с послед. омылением и хроматографич. разделением. Каротиноидные углеводороды (каротины) наиб. широко представлены в высших растениях. Основные - b-, a-, g-, e-каротииы и ликопин (ф-лы Ia- Iдсоотв.). Все они хорошо раств. в СНСl 3 , CS 2 и бензоле, хуже - в эфире, гексане, жирах и маслах. Легко присоединяют О 2 воздуха, неустойчивы на свету и при нагр. в присут. к-т и щелочей. С р-ром SbСl 3 в СНСl 3 дают характерное синее окрашивание (l макс 590 нм).

B-Каротин - темно-рубиновые ; в природе распространен в виде наиб. стабильного mpанс -изомера по всем двойным связям. В р-рах под действием света, при нагр. или добавлении иода частично изомеризуется в циc -изомеры. При воздействии О 2 или нагревании в присут. воздуха b-каротин постепенно окисляется и обесцвечивается; продуктами окисления являются разл. эпоксиды (напр., 5,6-эпокси-и 5,8-эпокси-b-каротины) и производные b-ионона. Гидрирование в присут. катализатора приводит к частичному или полному восстановлению двойных связей. b-Каротин м. б. выделен экстракцией сухой моркови, люцерны, гречихи, пальмового масла и др. растит. материалов. В пром. масштабе его получают микробиол. путем с помощью гетероталлич. мукорового гриба Blakeslea trispora, используя отходы крахмально-паточного произ-ва или мукомольной промети (кукурузная, соевая мука), а также синтетически из производных витамина А по схеме:


a-Каротин - красные кристаллы; содержится в тех же растениях, что и b-каротин, но в значительно меньшем кол-ве (до 25% от содержания b-каротина). При нагр. с этилатом Na частично превращ. в b-каротин; оптически активен ([a] D +315°). Ликопин - кристаллы красно-фиолетового цвета; красящее в-во томатов. Содержится также в плодах мн. родов растений; м. б. выделен из томатов или получен синтетич. путем. С 40 -Ксантофиллы содержат в изопреноидной цепи одну или несколько гидроксильных, алкоксильных, эпоксидных, альдегидных или кетонных групп. В природе распространены лютеин (Iе), виолоксантин (Iж), неоксантин (II), фукоксантин (III), криптоксантин (Iз), кантоксантин (I, R = R" = ж), астаксантин (I, R = R" = з) и др.


В группу гомо - К. объединены прир. пигменты, содержащие в молекуле более 40 атомов С. Выделены К. с 45, 50 и 56 атомами С. Апо-К. представлены соед. с укороченной полиеновой цепью (37 и менее атомов С). Нор-К. включают соед., в к-рых сохранена полиеновая цепочка, но отсутствуют один или неск. углеродных фрагментов; содержат 39 или менее атомов С, напр., биксин (I; R = СООН, R" = СООСН 3). В природе К. встречаются как в своб. состоянии, так и в виде гликозидов, каротинпротеинов или эфиров, образованных с одной или более молекулами жирных к-т. Впервые К. были выделены из стручков перца, позже - из желтой репы и моркови Daucus carota, откуда и получили свое название. Среди растений К. в наиб. кол-ве содержатся в абрикосах (50-100 мкг/г), моркови (80-120 мкг/г), листьях петрушки (100 мкг/г). Качественно и количественно К. определяют по интенсивности максимума поглощения света в видимой области, а также с помощью хроматографии. В организме животных К. не синтезируются, а поступают с пищей. К., имеющие в своем составе хотя бы одно кольцо А (см. ф-лу I), являются предшественниками витамина А. Превращ. в организме этих К., содержащих 40 атомов С, в А с 20 атомами осуществляется расщеплением молекулы К. по центр. двойной связи или ступенчатым расщеплением, начиная с конца молекулы.

Наиб. А-витаминной активностью обладает b-каротин (условно ее принимают равной 100%), a-каротина 53%, g-каротина 48%, криптоксантина 40%. К. участвуют в фотосинтезе, транспорте кислорода через клеточные мембраны, защищают зеленые растения от действия света; у животных стимулируют деятельность половых желез, у человека повышают иммунный статус, защищают от фотодерматозов, как предшественники витамина А играют важную роль в механизме зрения; прир. . К. используют в качестве пром. пищ. красителей, компонентов витаминного корма животных, в мед. практике - для лечения пораженных кожных покровов. При потреблении в пищу больших кол-в К. гипервитаминоз не наблюдается. Лит.: Бриттон Г., Биохимия природных пигментов, пер. с. англ., М., 1986; Кретович В. Л., Биохимия растений. 2 изд.. М., 1986; Гудвин Т., Мерсер Э., Введение в биохимию растений, пер. с англ., т. 1-2, М., 1986; Carotenoids, ed. by О. Isler , Basel Stuttg., 1971; Foppen F., "Chromatographic Reviews", 1971, v. 14, p. 133-298. Л. А. Вакулова. Г. И. Самохвалов.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "КАРОТИНОИДЫ" в других словарях:

    Жёлтые, оранжевые или красные пигменты, синтезируемые гл. обр. бактериями, грибами и высшими растениями; полиненасыщенные углеводороды терпенового ряда. Животные обычно не образуют К. (имеются сведения о синтезе К. мор. организмами, напр. нек… … Биологический энциклопедический словарь

    КАРОТИНОИДЫ - КАРОТИНОИДЫ, групповое обозначение ряда пигментов желтого, оранжевого или красного цвета, характеризующихся способностью растворяться в тех же растворителях, что и жиры, и составляющих главную часть т.н.липохромов. Широко распространены в… … Большая медицинская энциклопедия

    - (от лат. carota морковь и греч. eidos вид) группа природных пигментов желтого или оранжевого цвета. По химической природе изопреноиды; ненасыщенные углеводороды (каротины) или их окисленные производные (ксантофиллы). Синтезируются некоторыми… … Большой Энциклопедический словарь

    КАРОТИНОИДЫ, группа растворимых в жирах растительных пигментов, от желтого до красного. Содержатся также в некоторых животных жирах. Представляют собой изомеры КАРОТИНА, пигмента, который в печени превращается в витамин А, необходимый для… … Научно-технический энциклопедический словарь

    Пигменты алифатического или ациклического строения, состоящие из изопреновых остатков, обычно желтого или оранжевого цвета. Наиболее многочисленная и широко распространенная группа микробных пигментов. Функции К. – а) предохранение клеток от… … Словарь микробиологии

    Каротин, ликопин и другие каротиноиды придают окраску большинству оранжевых овощей и фруктов Каротиноиды тетратерпены и тетратерпеноиды, формально являющиеся производными& … Википедия

    - (от лат. carota морковь и греч. éidos вид), группа природных пигментов жёлтого или оранжевого цвета. По химической природе изопреноиды; ненасыщенные углеводороды (каротины) или их окисленные производные (ксантофиллы). Синтезируются некоторыми… … Энциклопедический словарь

    - (син. липохромы устар.) биологически активные жирорастворимые желтые, оранжевые или красные пигменты, синтезируемые бактериями, грибами и высшими растениями; некоторые К. являются предшественниками ретинола (витамина А) … Большой медицинский словарь

    Жёлтые, оранжевые или красные пигменты (циклические или ациклические Изопреноиды), синтезируемые бактериями, грибами и высшими растениями. Животные обычно не образуют К., но используют их для синтеза витамина А. К К. относятся широко… … Большая советская энциклопедия

    - (от лат. carota морковь и греч. eidos вид), группа природных пигментов жёлтого или оранжевого цвета. По хим. природе изопреноиды; ненасыщенные углеводороды (каротины) или их окисленные производные (ксантофиллы). Синтезируются нек рыми… … Естествознание. Энциклопедический словарь